Part Number Hot Search : 
AD587SQ 160808 NDH8304P UFORCE UM1513 4ACT2 649LP6E BH95331J
Product Description
Full Text Search
 

To Download LTC5510 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 for more information www.linear.com/LTC5510 typical a pplica t ion fea t ures descrip t ion 1mhz to 6ghz wideband high linearity active mixer the lt c ? 5510 is a high linearity mixer optimized for applica - tions requiring very wide input bandwidth, low distortion, and low lo leakage. the chip includes a double-balanced active mixer with an input buffer and a high speed lo ampli - fier. the input is optimized for use with 1:1 transmission- line baluns, allowing very wideband impedance matching. the mixer can be used for both up- and down-conversion and can be used in wideband systems. the lo can be driven differentially or single-ended and requires only 0 dbm of lo power to achieve excellent distor - tion and noise performance, while also reducing external drive circuit requirements. the LTC5510 offers low lo leakage, greatly reducing the need for output filtering to meet lo suppression requirements. the LTC5510 is optimized for 5 v but can also be used with a 3.3 v supply with slightly reduced performance. the shutdown function allows the part to be disabled for further power savings. 30mhz to 4ghz up/down mixer for wideband receiver conversion gain, iip3 and nf vs input frequency a pplica t ions n input/lo frequency range to 6ghz n 50 matched input from 30mhz to >3ghz n capable of up- or down-conversion n oip3: 27dbm at f out = 1575mhz n 1.5db conversion gain n noise figure: 11.6db at f out = 1575mhz n high input p1db: 11dbm at 5v n 5v or 3.3v supply at 105ma n shutdown control n lo input impedance always matched n 0dbm lo drive level n 0n-chip temperature monitor n C40c to 105c operation (t c ) n 16-lead (4mm 4mm) qfn package n wideband receivers/transmitters n cable downlink infrastructure n hf/vhf/uhf mixer n wireless infrastructure l, lt , lt c , lt m , linear technology and the linear logo are registered trademarks of linear technology corporation. all other trademarks are the property of their respective owners. lgnd lo ? lo + temp temperature monitor out + out ? in + in ? 10nf en en v cc1 v cc2 i adj 5v LTC5510 1f 6.8nh 6.8nh 5510 ta01 lo 50 out 1575mhz 50 bd1222j50200ahf 4:1 in 30mhz to 4ghz 50 tcm1-43x + 1:1 0.1f 0.1f 0.1f 0.1f 0.6pf 6.8pf 10nf 4.75k bias input frequency (mhz) 0 gain (db), iip3 (dbm), nf (db) 20 25 15 10 1000 3000 2000 4000 5 0 30 5510 ta01a g c iip3 f out = 1575mhz p in = ?10dbm p lo = 0dbm t c = 25c nf hs lo ls lo 5510f ltc 5510
2 for more information www.linear.com/LTC5510 p in c on f igura t ion a bsolu t e maxi m u m r a t ings supply voltage (v cc 1 , v cc 2 , out + , out C ) ................ 6.0 v e nable voltage ( en ) ......................... C 0.3 v to v cc + 0.3 v current adjust voltage (i adj ) .................... C0. 3 v to 2.7 v lo input power (1 mhz to 6 ghz ) ........................ +1 0 dbm lo differential dc voltage ....................................... 1. 5 v lo + , lo C input dc voltage ........................... C 0.3 v to 3v in + , in C input power (1 mhz to 6 ghz ) ................ +1 5 dbm in + , in C input dc voltage ......................... C 0.3 v to 2.4 v temp monitor input current ( temp ) ...................... 10 ma o perating temperature range (t c ) ........ C40 c to 105 c storage temperature range .................. C 65 c to 150 c junction temperature (t j ) .................................... 150 c (note 1) 16 15 14 13 5 6 7 8 top view 17 uf package 16-lead (4mm 4mm) plastic qfn 9 10 11 12 4 3 2 1 temp in + in ? lgnd gnd out + out ? gnd tp lo + lo ? gnd en v cc1 v cc2 i adj t jmax = 150c, jc = 6c/w exposed pad ( pin 17) is gnd, must be soldered to pcb o r d er i n f or m a t ion lead free finish tape and reel part marking package description temperature range LTC5510iuf#pbf LTC5510iuf#trpbf 5510 16-lead (4mm 4mm) plastic qfn C40c to 105c consult lt c marketing for parts specified with wider operating temperature ranges. for more information on lead free part marking, go to: http://www.linear.com/leadfree/ for more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ parameter conditions min typ max units input frequency range requires external matching l 1 to 6000 mhz lo input frequency range l 1 to 6000 mhz output frequency range requires external matching l 1 to 4500 mhz input return loss z o = 50, 30mhz to 3ghz >11 db lo input return loss z o = 50, 1mhz to 5ghz >10 db output impedance differential at 1500mhz 201||0.6pf r||c lo input power f lo = 1mhz to 5ghz C6 0 6 dbm ac e lec t rical c harac t eris t ics the l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t c = 25 c. en = high, p lo = 0dbm. test circuit shown in figure 1. (notes 2, 3, 4) 5510f ltc 5510
3 for more information www.linear.com/LTC5510 ac e lec t rical c harac t eris t ics the l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t c = 25 c. en = high, p lo = 0dbm, p in = C10dbm (C10dbm/ tone for two- tone tests), unless otherwise noted. test circuit shown in figure 1. (notes 2, 3, 4) parameter conditions min typ max units 5v wideband up/downmixer application: f in = 30mhz to 3000mhz, f out = 1575mhz, v cc = 5v, r1 = 4.75k conversion gain f in = 190mhz, f lo = 1765mhz, upmixer f in = 900mhz, f lo = 2475mhz, upmixer f in = 2150mhz, f lo = 575mhz, downmixer f in = 2600mhz, f lo = 1025mhz, downmixer 0.5 1.5 1.4 1.1 1.2 db db db db conversion gain vs t emperature t c = C40c to 105c, f in = 900mhz l C0.007 db/c tw o -tone output 3rd order intercept (f = 2mhz) f in = 190mhz, f lo = 1765mhz, upmixer f in = 900mhz, f lo = 2475mhz, upmixer f in = 2150mhz, f lo = 575mhz, downmixer f in = 2600mhz, f lo = 1025mhz, downmixer 24.0 27.8 25.0 26.0 24.5 dbm dbm dbm dbm ssb noise figure f in = 190mhz, f lo = 1765mhz, upmixer f in = 900mhz, f lo = 2475mhz, upmixer f in = 2150mhz, f lo = 575mhz, downmixer f in = 2600mhz, f lo = 1025mhz, downmixer 11.6 12.1 11.6 11.8 14.5 db db db db ssb noise figure under blocking f in =900mhz, f lo = 2475mhz, f block = 800mhz, p block = +5dbm 20.3 db lo-in leakage f lo = 20mhz to 3300mhz 40 >22 db db in-lo isolation f in = 30mhz to 3000mhz >55 db input 1db compression f in = 190mhz, f lo = 1765mhz, upmixer f in = 900mhz, f lo = 2475mhz, upmixer f in = 2150mhz, f lo = 575mhz, downmixer f in = 2600mhz, f lo = 1025mhz, downmixer 11.0 12.2 11.5 11.6 dbm dbm dbm dbm 3.3v wideband up/downmixer application: f in = 30mhz to 3000mhz, f out = 1575mhz, v cc = 3.3v, r1 = 1.8k conversion gain f in = 190mhz, f lo = 1765mhz, upmixer f in = 900mhz, f lo = 2475mhz, upmixer f in = 2150mhz, f lo = 575mhz, downmixer f in = 2600mhz, f lo = 1025mhz, downmixer 1.5 1.4 1.1 1.2 db db db db conversion gain vs t emperature t c = C40c to 105c, f in = 900mhz l C0.006 db/c tw o -tone output 3rd order intercept (f = 2mhz) f in = 190mhz, f lo = 1765mhz, upmixer f in = 900mhz, f lo = 2475mhz, upmixer f in = 2150mhz, f lo = 575mhz, downmixer f in = 2600mhz, f lo = 1025mhz, downmixer 24.2 23.3 23.9 22.3 dbm dbm dbm dbm ssb noise figure f in = 190mhz, f lo = 1765mhz, upmixer f in = 900mhz, f lo = 2475mhz, upmixer f in = 2150mhz, f lo = 575mhz, downmixer f in = 2600mhz, f lo = 1025mhz, downmixer 11.2 12.2 11.4 11.4 db db db db ssb noise figure under blocking f in = 900mhz, f lo = 2475mhz, f block = 800mhz p block = +5dbm 20.8 db lo-in leakage f lo = 20mhz to 3300mhz 40 >22 db db in-lo isolation f in = 30mhz to 3000mhz >55 db input 1db compression f in = 190mhz, f lo = 1765mhz, upmixer f in = 900mhz, f lo = 2475mhz, upmixer f in = 2150mhz, f lo = 575mhz, downmixer f in = 2600mhz, f lo = 1025mhz, downmixer 8.9 10.7 10.1 9.6 dbm dbm dbm dbm 5510f ltc 5510
4 for more information www.linear.com/LTC5510 parameter conditions min typ max units 5v wideband upmixer application: f in = 30mhz to 1000mhz, f out = 2140mhz, f lo = f in + f out , v cc = 5v, r1 = 4.75k conversion gain f in = 190mhz f in = 450mhz f in = 900mhz 1.1 1.0 1.0 db db db conversion gain vs t emperature t c = C40c to 105c, f in = 190mhz l C0.006 db/c tw o -tone output 3rd order intercept (f = 2mhz) f in = 190mhz f in = 450mhz f in = 900mhz 25.6 24.6 23.9 dbm dbm dbm ssb noise figure f in = 190mhz f in = 450mhz f in = 900mhz 12.0 12.2 12.4 db db db ssb noise floor at p in = +5dbm f in = 800mhz, f lo = 3040mhz, f out = 2140mhz C151.4 dbm/hz lo-in leakage f lo = 2100mhz to 3500mhz 40 db in-lo isolation f in = 30mhz to 1100mhz >50 db input 1db compression f in = 190mhz f in = 450mhz f in = 900mhz 11.5 11.5 11.7 dbm dbm dbm 5v vhf/uhf wideband downmixer application: f in = 100mhz to 1000mhz, f out = 44mhz, f lo = f in + f out , v cc = 5v, r1 = open conversion gain f in = 140mhz f in = 456mhz f in = 900mhz 1.9 1.9 1.9 db db db conversion gain vs t emperature t c = C40c to 105c, f in = 456mhz l C0.006 db/c tw o -tone output 3rd order intercept (f = 2mhz) f in = 140mhz f in = 456mhz f in = 900mhz 27.8 28.5 26.8 dbm dbm dbm ssb noise figure f in = 140mhz f in = 456mhz f in = 900mhz 10.8 10.9 11.6 db db db ssb noise figure under blocking f in = 900mhz, f lo = 944mhz, f block = 800mhz, p block = +5dbm 20.0 db tw o -tone input 2nd order intercept (f = f im2 = 42mhz) f in1 = 477mhz, f in2 = 435mhz, f lo = 500mhz 72 dbm 2lo-2rf output spurious product (f in = f lo C f out /2) f in = 478mhz at C6dbm, f lo = 500mhz, f out = 44mhz C84 dbc 3lo-3rf output spurious product (f in = f lo C f out /3) f in = 485.33mhz at C6dbm, f lo = 500mhz, f out = 44.01mhz C82 dbc lo-in leakage f lo = 50mhz to 1200mhz 23 db in-lo isolation f in = 50mhz to 1000mhz >62 db input 1db compression f in = 456mhz 12.1 dbm ac e lec t rical c harac t eris t ics the l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t c = 25 c. en = high, p lo = 0dbm, p in = C10dbm (C10dbm/ tone for two- tone tests), unless otherwise noted. test circuit shown in figure 1. (notes 2, 3, 4) 5510f ltc 5510
5 for more information www.linear.com/LTC5510 ac e lec t rical c harac t eris t ics the l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t c = 25 c. en = high, p lo = 0dbm, p in = C10dbm (C10dbm/ tone for two- tone tests), unless otherwise noted. test circuit shown in figure 1. (notes 2, 3, 4) note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime. note 2: the LTC5510 is guaranteed functional over the case operating temperature range of C40c to 105c. ( jc = 6c/w) note 3: ssb noise figure measured with a small-signal noise source, bandpass filter and 3db matching pad on the signal input, bandpass filter and 6db matching pad on the lo input, and no other rf signals applied. note 4: specified performance includes all external component and evaluation pcb losses. d c e lec t rical c harac t eris t ics the l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at t c = 25c. v cc = 5v, en = high, unless otherwise noted. test circuit shown in figure 1. (note 2) parameter conditions min typ max units power supply supply voltage (pins 6, 7, 10, 11) 5v supply 3.3v supply l l 4.5 3.1 5 3.3 5.3 3.5 v v supply current (pins 6, 7, 10, 11) 5v, r1 = open 5v, r1 = 4.75k 3.3v, r1 = open 3.3v, r1 = 1.8k 105 99.6 105 94 113 ma ma ma ma t otal supply current C shutdown en = low 1.3 2.5 ma enable logic input (en) en input high voltage (on) l 1.8 v en input low voltage (off) l 0.5 v en input current C0.3v to v cc + 0.3v C20 200 a turn-on time en: low to high 0.6 s turn-off time en: high to low 0.6 s current adjust pin (i adj ) open circuit dc voltage 1.8 v short circuit dc current i adj shorted to ground 1.9 ma temperature monitor pin (temp) dc voltage at t j = 25c i in = 10a i in = 80a 697 755 mv mv voltage t emperature coefficient i in = 10a i in = 80a l l C1.80 C1.61 mv /c mv/c parameter conditions min typ max units 5v vhf/uhf upmixer application: f in = 70mhz, f out = 100mhz to 1000mhz, f lo = f in + f out , v cc = 5v, r1 = open, l3 = 220nh conversion gain f out = 456mhz 1.1 db conversion gain vs temperature t c = C 40c to 105c, f out = 456mhz l C0.007 db/c tw o -tone output 3rd order intercept (f = 2mhz) f out = 456mhz 29.0 dbm ssb noise figure f out = 456mhz 11.3 db ssb noise floor at p in = +5dbm f in = 44mhz, f lo = 532mhz, f out = 462mhz C152 dbm/hz lo-in leakage f lo = 100mhz to 1500mhz 43 db in-lo isolation f in = 50mhz to 400mhz >70 db input 1db compression f out = 456mhz 11.0 dbm 5510f ltc 5510
6 for more information www.linear.com/LTC5510 typical d c p er f or m ance c harac t eris t ics typical ac p er f or m ance c harac t eris t ics conversion gain distribution at 1575mhz oip3 distribution at 1575mhz noise figure distribution at 1575mhz 5v supply current vs supply voltage 3.3v supply current vs supply voltage (test circuit shown in figure 1) 5 v wideband up/downmixer application: v cc = 5v, t c = 25c, f in = 190mhz, p in = C10dbm (C10dbm/tone for 2-tone tests, f = 2mhz), f lo = 1765mhz, p lo = 0dbm, output measured at 1575mhz, unless otherwise noted. (test circuit shown in figure 1). supply voltage (v) 4.5 supply current (ma) 102 104 100 98 4.7 5.1 4.9 5.3 96 94 106 5510 g01 t c = ?40c t c = 25c t c = 85c t c = 105c r1 = 4.75k supply voltage (v) 3.0 supply current (ma) 96 94 92 3.1 3.53.43.33.2 3.6 90 88 98 5510 g02 t c = ?40c t c = 25c t c = 85c t c = 105c r1 = 1.8k gain (db) 0.8 distribution (%) 40 30 20 1 1.2 21.81.61.4 2.2 10 0 50 5510 g03 f in = 190mhz 85c 25c ?40c oip3 (dbm) 21 distribution (%) 40 30 20 23 31292725 33 10 0 50 5510 g04 f in = 190mhz 85c 25c ?40c noise figure (db) 9 distribution (%) 40 30 20 13121110 14 10 0 50 5510 g05 f in = 190mhz 85c 25c ?40c 5510f ltc 5510
7 for more information www.linear.com/LTC5510 conversion gain, oip3 and nf vs lo power noise figure vs input blocker level conversion gain, oip3 and nf vs supply voltage im3 level vs output power (2-tone) im2 level vs output power (2-tone) conversion gain, oip3, nf and input p1db vs case temperature conversion gain, oip3 and nf vs input frequency conversion gain and oip3 vs output frequency lo leakage vs lo frequency typical ac p er f or m ance c harac t eris t ics 5v wideband up/downmixer application for f in < 1575mhz: v cc = 5v, t c = 25c, f in = 190mhz, p in = C10dbm (C10dbm/tone for 2-tone tests, f = 2mhz), hslo, p lo = 0dbm, output measured at 1575mhz, unless otherwise noted. (test circuit shown in figure 1). input frequency (mhz) 0 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 1200 800 400 1600 8 4 0 32 5510 g06 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c output frequency (mhz) 1200 gain (db), oip3 (dbm) 28 24 20 16 12 1800 1600 1400 2000 8 4 0 32 5510 g07 oip3 g c t c = 105c t c = 85c t c = 25c t c = ?40c lo-in lo frequency (mhz) 1500 lo leakage (dbm) ?10 ?20 ?30 ?40 ?50 2700 2300 1900 3100 ?60 ?70 ?80 0 5510 g08 lo-out lo input power (dbm) ?12 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 30?3?6?9 6 8 4 0 32 5510 g09 t c = 105c t c = 85c t c = 25c t c = ?40c oip3 nf g c blocker power (dbm) ?20 noise figure (db) 22 20 18 0?5 ?10 ?15 5 16 14 12 24 5510 g10 f in = 900mhz f block = 800mhz f lo = 2475mhz 6dbm 3dbm 0dbm ?3dbm p lo = ?6dbm supply voltage (v) 4.5 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 5.25.15.04.94.84.74.6 5.3 8 4 0 32 5510 g11 nf t c = 105c t c = 85c t c = 25c t c = ?40c g c oip3 output power (dbm) ?15 im3 level (dbc) ?20 ?40 ?60 0 ?5 ?10 5 ?80 ?100 0 5510 g12 t c = 105c t c = 85c t c = 25c t c = ?40c output power (dbm) ?15 im2 level (dbc) ?20 ?40 ?60 0 ?5 ?10 5 ?80 ?100 0 5510 g13 t c = 105c t c = 85c t c = 25c t c = ?40c f im2 = 1385mhz case temperature (c) ?45 gain and nf (db), oip3 and p1db (dbm) 30 25 20 15 10 754515 ?15 105 5 0 35 5510 g14 nf ip1db g c oip3 5510f ltc 5510
8 for more information www.linear.com/LTC5510 conversion gain, oip3 and nf vs lo power conversion gain, oip3 and nf vs supply voltage im3 level vs output power (2-tone) conversion gain, oip3, nf and input p1db vs case temperature conversion gain, oip3 and nf vs input frequency conversion gain and oip3 vs output frequency lo leakage vs lo frequency typical ac p er f or m ance c harac t eris t ics 5v wideband up/downmixer application for f in > 1575mhz: v cc = 5v, t c = 25c, f in = 2150mhz, p in = C10dbm (C10dbm/tone for 2-tone tests, f = 2mhz), lslo, p lo = 0dbm, output measured at 1575mhz, unless otherwise noted. (test circuit shown in figure 1). input frequency (mhz) 1600 gain (db), oip3 (dbm), nf (db) 25 20 15 2800 2400 2000 3200 10 5 0 30 5510 g15 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c output frequency (mhz) 1200 gain (db), oip3 (dbm) 25 20 15 1800 1600 1400 2000 10 5 0 30 5510 g16 oip3 g c t c = 105c t c = 85c t c = 25c t c = ?40c lo-in lo frequency (mhz) 0 300 lo leakage (dbm) ?10 ?20 ?30 ?40 ?50 1200 900 600 1500 ?60 ?70 ?80 0 5510 g17 lo-out lo input power (dbm) ?12 gain (db), oip3 (dbm), nf (db) 25 20 15 0?3?6?9 3 6 10 5 0 30 5510 g18 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c supply voltage (v) 4.5 gain (db), oip3 (dbm), nf (db) 25 20 15 4.9 4.7 5.1 5.3 10 5 0 30 5510 g20 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c output power (dbm) ?15 im3 level (dbc) ?20 ?40 ?5 ?10 0 5 ?60 ?80 ?100 0 5510 g21 t c = 105c t c = 85c t c = 25c t c = ?40c case temperature (c) ?45 ?15 gain and nf (db), oip3 and p1db (dbm) 20 25 15 4515 75 105 10 5 0 30 5510 g23 oip3 nf g c ip1db 5510f ltc 5510
9 for more information www.linear.com/LTC5510 conversion gain, oip3 and nf vs lo power noise figure vs input blocker level conversion gain, oip3 and nf vs supply voltage im3 level vs output power (2-tone) im2 level vs output power (2-tone) conversion gain, oip3, nf and input p1db vs case temperature conversion gain, oip3 and nf vs input frequency conversion gain and oip3 vs output frequency lo leakage vs lo frequency typical ac p er f or m ance c harac t eris t ics 3.3v wideband up/downmixer application for f in < 1575mhz: v cc = 3.3v, t c = 25c, f in = 190mhz, p in = C10dbm (C10dbm/tone for 2-tone tests, f = 2mhz), hslo, p lo = 0dbm, output measured at 1575mhz, unless otherwise noted. (test circuit shown in figure 1). input frequency (mhz) 0 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 1200 800 400 1600 8 4 0 32 5510 g24 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c output frequency (mhz) 1200 gain (db), oip3 (dbm) 30 25 20 15 1800 1600 1400 2000 10 5 0 35 5510 g25 t c = 105c t c = 85c t c = 25c t c = ?40c g c oip3 lo-in lo frequency (mhz) 1500 lo leakage (dbm) ?10 ?20 ?30 ?40 ?50 2700 2300 1900 3100 ?60 ?70 ?80 0 5510 g26 lo-out lo input power (dbm) ?12 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 30?3?6?9 6 8 4 0 32 5510 g27 t c = 105c t c = 85c t c = 25c t c = ?40c oip3 nf g c blocker power (dbm) ?20 noise figure (db) 22 20 18 0?5 ?10 ?15 5 16 14 12 24 5510 g28 f in = 900mhz f block = 800mhz f lo = 2475mhz 6dbm 3dbm 0dbm ?3dbm p lo = ?6dbm supply voltage (v) 3.0 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 3.53.43.33.23.1 3.6 8 4 0 32 5510 g29 nf g c oip3 t c = 105c t c = 85c t c = 25c t c = ?40c output power (dbm) ?15 im3 level (dbc) ?20 ?40 ?60 0 ?5 ?10 5 ?80 ?100 0 5510 g30 t c = 105c t c = 85c t c = 25c t c = ?40c output power (dbm) ?15 im2 level (dbc) ?20 ?40 ?60 0 ?5 ?10 5 ?80 ?100 0 5510 g31 t c = 105c t c = 85c t c = 25c t c = ?40c f im2 = 1385mhz case temperature (c) ?45 gain and nf (db), oip3 and p1db (dbm) 30 25 20 15 10 754515 ?15 105 5 0 35 5510 g32 nf ip1db g c oip3 5510f ltc 5510
10 for more information www.linear.com/LTC5510 typical ac p er f or m ance c harac t eris t ics 3.3v wideband up/downmixer application for f in > 1575mhz: v cc = 3.3v, t c = 25c, f in = 2150mhz, p in = C10dbm (C10dbm/tone for 2-tone tests, f = 2mhz), lslo, p lo = 0dbm, output measured at 1575mhz, unless otherwise noted. (test circuit shown in figure 1). conversion gain, oip3 and nf vs lo power conversion gain, oip3 and nf vs supply voltage im3 level vs output power (2-tone) conversion gain, oip3, nf and input p1db vs case temperature conversion gain, oip3 and nf vs input frequency conversion gain and oip3 vs output frequency lo leakage vs lo frequency input frequency (mhz) 1600 gain (db), oip3 (dbm), nf (db) 25 20 15 10 2800 2400 2000 3200 5 0 30 5510 g33 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c output frequency (mhz) 1200 gain (db), oip3 (dbm) 25 20 15 10 1800 1600 1400 2000 5 0 30 5510 g34 oip3 g c t c = 105c t c = 85c t c = 25c t c = ?40c lo-in lo frequency (mhz) 0 lo leakage (dbm) ?10 ?20 ?30 ?40 ?50 1200 900 600 300 1500 ?60 ?70 ?80 0 5510 g35 lo-out lo input power (dbm) ?12 gain (db), oip3 (dbm), nf (db) 25 20 15 30?3?6?9 6 10 5 0 30 5510 g36 t c = 105c t c = 85c t c = 25c t c = ?40c oip3 nf g c supply voltage (v) 3.0 gain (db), oip3 (dbm), nf (db) 25 20 15 3.53.43.33.23.1 3.6 10 5 0 30 5510 g38 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c output power (dbm) ?15 im3 level (dbc) ?20 ?40 0 ?5 ?10 5 ?60 ?80 0 5510 g39 t c = 105c t c = 85c t c = 25c t c = ?40c case temperature (c) ?45 gain and nf (db), oip3 and p1db (dbm) 25 20 15 10 754515 ?15 105 5 0 30 5510 g41 oip3 nf ip1db g c 5510f ltc 5510
11 for more information www.linear.com/LTC5510 conversion gain, oip3 and nf vs lo power output noise floor vs input power conversion gain, oip3 and nf vs supply voltage im3 level vs output power (2-tone) im2 level vs output power (2-tone) conversion gain, oip3, nf and input p1db vs case temperature conversion gain, oip3 and nf vs input frequency conversion gain, oip3 and nf vs output frequency lo leakage vs lo frequency typical ac p er f or m ance c harac t eris t ics 5v wideband upmixer application: v cc = 5v, t c = 25c, f in = 190mhz, p in = C10dbm (C10dbm/tone for 2-tone tests, f = 2mhz), hslo, p lo = 0dbm, output measured at 2140mhz, unless otherwise noted. (test circuit shown in figure 1). input frequency (mhz) 0 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 800 400 1200 8 4 0 32 5510 g42 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c output frequency (mhz) 1600 1700 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 2100 2200 1900 2000 1800 2300 8 4 0 32 5510 g43 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c lo-in lo frequency (mhz) 2100 lo leakage (dbm) ?10 ?20 ?30 ?40 ?50 330031002900270025002300 3500 ?60 ?70 ?80 0 5510 g44 lo-out lo input power (dbm) ?12 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 30?3?6?9 6 8 4 0 32 5510 g45 t c = 105c t c = 85c t c = 25c t c = ?40c oip3 nf g c input power (dbm) ?20 output noise (dbm/hz) ?148 ?150 ?152 0?5 ?10 ?15 5 ?154 ?156 ?158 ?160 ?162 ?146 5510 g46 f in = 800mhz f lo = 3040mhz 6dbm 3dbm 0dbm ?3dbm p lo = ?6dbm supply voltage (v) 4.5 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 5.25.15.04.94.84.74.6 5.3 8 4 0 32 5510 g47 nf t c = 105c t c = 85c t c = 25c t c = ?40c g c oip3 output power (dbm) ?15 im3 level (dbc) ?20 ?40 ?60 0 ?5 ?10 5 ?80 ?100 0 5510 g48 t c = 105c t c = 85c t c = 25c t c = ?40c output power (dbm) ?15 im2 level (dbc) ?20 ?40 ?60 0 ?5 ?10 5 ?80 ?100 0 5510 g49 t c = 105c t c = 85c t c = 25c t c = ?40c f im2 = 1950mhz case temperature (c) ?45 gain and nf (db), oip3 and p1db (dbm) 25 20 15 10 754515 ?15 105 5 0 30 5510 g50 nf ip1db g c oip3 5510f ltc 5510
12 for more information www.linear.com/LTC5510 conversion gain, oip3 and nf vs lo power output noise floor vs input power conversion gain, oip3 and nf vs supply voltage im3 level vs output power (2-tone) im2 level vs output power (2-tone) conversion gain, oip3, nf and input p1db vs case temperature conversion gain, oip3 and nf vs output frequency conversion gain and oip3 vs input frequency lo leakage vs lo frequency typical ac p er f or m ance c harac t eris t ics 5v vhf/uhf upmixer application: v cc = 5v, t c = 25c, f in = 70mhz, p in = C10dbm (C10dbm/tone for 2-tone tests, f = 2mhz), hslo, p lo = 0dbm, output measured at 456mhz, unless otherwise noted. (test circuit shown in figure 2). output frequency (mhz) 0 gain (db), oip3 (dbm), nf (db) 28 24 20 16 12 800 600 400 200 1000 8 4 0 32 5510 g51 oip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c input frequency (mhz) 0 gain (db), oip3 (dbm) 28 24 20 16 300 200 100 400 12 8 4 0 32 5510 g52 oip3 g c t c = 105c t c = 85c t c = 25c t c = ?40c lo-in lo frequency (mhz) 0 lo leakage (dbm) ?10 ?20 ?30 ?40 ?50 1200 900 600 300 1500 ?60 ?70 ?80 ?90 0 5510 g53 lo-out lo input power (dbm) ?12 gain (db), oip3 (dbm), nf (db) 28 24 20 16 30?3?6?9 6 12 4 8 0 32 5510 g54 t c = 105c t c = 85c t c = 25c t c = ?40c oip3 nf g c input power (dbm) ?20 output noise (dbm/hz) ?148 ?150 ?152 ?154 ?156 0?5 ?10 ?15 5 ?158 ?160 ?162 ?146 5510 g55 f in = 44mhz f out = 462mhz f lo = 532mhz 6dbm 3dbm 0dbm ?3dbm p lo = ?6dbm supply voltage (v) 4.5 gain (db), oip3 (dbm), nf (db) 28 24 20 16 5.25.15.04.94.84.74.6 5.3 12 8 4 0 32 5510 g56 nf t c = 105c t c = 85c t c = 25c t c = ?40c g c oip3 output power (dbm) ?15 im3 (dbc) ?20 ?40 ?60 0 3 ?3 ?12 ?9 ?6 6 ?80 ?100 0 5510 g57 t c = 105c t c = 85c t c = 25c t c = ?40c output power (dbm) ?15 im2 (dbc) ?20 ?40 ?60 0?3?6 3 ?9?12 6 ?80 ?100 0 5510 g58 t c = 105c t c = 85c t c = 25c t c = ?40c f im2 = 386mhz case temperature (c) ?45 gain and nf (db), oip3 and p1db (dbm) 28 24 20 16 12 754515 ?15 105 8 4 0 32 5510 g59 nf g c oip3 ip1db 5510f ltc 5510
13 for more information www.linear.com/LTC5510 conversion gain, iip3 and nf vs lo power noise figure vs input blocker level conversion gain, iip3 and nf vs supply voltage im3 level vs input power (2-tone) conversion gain, iip3, nf and input p1db vs case temperature conversion gain, iip3 and nf vs input frequency conversion gain and iip3 vs output frequency lo leakage vs lo frequency typical ac p er f or m ance c harac t eris t ics 5v vhf/uhf downmixer application: v cc = 5v, t c = 25c, f in = 456mhz, p in = C10dbm (C10dbm/tone for 2-tone tests, f = 2mhz), hslo, p lo = 0dbm, output measured at 44mhz, unless otherwise noted. (test circuit shown in figure 2). input frequency (mhz) 0 gain (db), iip3 (dbm), nf (db) 25 20 15 800 600 400 200 1000 10 5 0 30 5510 g60 iip3 nf g c t c = 105c t c = 85c t c = 25c t c = ?40c output frequency (mhz) 0 gain (db), iip3 (dbm) 25 20 15 250200 50 100 150 300 10 5 0 30 5510 g61 iip3 g c t c = 105c t c = 85c t c = 25c t c = ?40c lo-in lo frequency (mhz) 0 lo leakage (dbm) ?10 ?20 ?30 ?40 ?50 1000800 200 400 600 1200 ?60 ?70 ?80 0 5510 g62 lo-out lo input power (dbm) ?12 gain (db), iip3 (dbm), nf (db) 25 20 15 30?3?6?9 6 10 5 0 30 5510 g63 t c = 105c t c = 85c t c = 25c t c = ?40c iip3 nf g c supply voltage (v) 4.5 gain (db), iip3 (dbm), nf (db) 25 20 15 10 5.25.15.04.94.84.74.6 5.3 5 0 30 5510 g65 t c = 105c t c = 85c t c = 25c t c = ?40c g c iip3 nf input power (dbm) ?15 im3 (dbc) ?20 ?40 ?60 0 ?5 ?10 5 ?80 ?100 0 5510 g66 t c = 105c t c = 85c t c = 25c t c = ?40c case temperature (c) ?45 gain and nf (db), iip3 and p1db (dbm) 25 20 15 10 754515 ?15 105 5 0 30 5510 g68 ip1db g c iip3 nf blocker power (dbm) ?20 noise figure (db) 24 22 20 0?5 ?10 ?15 5 18 16 14 12 26 5510 g64 p lo = ?6dbm p lo = ?3dbm p lo = 0dbm p lo = 3dbm p lo = 6dbm f in = 900mhz f block = 800mhz f lo = 944mhz 5510f ltc 5510
14 for more information www.linear.com/LTC5510 p in func t ions temp (pin 1): temperature monitor. this pin is connected to the anode of a diode through a 30 resistor. it may be used to measure the die temperature by forcing a current into the pin and measuring the voltage. in + , in C (pins 2, 3): differential signal input. for optimum performance, these pins should be driven with a differential signal. the input can be driven single-ended, with some performance degradation, by connecting the undriven pin to rf ground through a capacitor. an internally generated 1.6v dc bias voltage is present on these pins, thus dc blocking capacitors are required. lgnd (pin 4): dc ground return for the input amplifier. this pin must be connected to dc ground. the typical current from this pin is 64 ma. in some applications an external chip inductor may be used. note that any induc - tor dc resistance will reduce the current through this pin. en (pin 5): enable pin. when the applied voltage is greater than 1.8 v, the ic is enabled. below 0.5 v, the ic is disabled. v cc1 , v cc2 (pins 6, 7): power supply pins for the bias and lo buffer circuits. typical current consumption is 41ma. these pins should be connected together on the circuit board and decoupled with a 10 nf capacitor located close to the pins. i adj (pin 8): bias adjust pin. this pin allows adjustment of the internal mixer current by adding an external pull- down resistor. the typical dc voltage on this pin is 1.8 v. if not used, this pin must be left floating. gnd (pins 9, 12, 13, exposed pad (pin 17)): ground. these pins must be soldered to the rf ground plane on the circuit board. the exposed metal pad of the package provides both electrical contact to ground and a good thermal contact to the printed circuit board. out C , out + (pins 10, 11,): differential output. these pins must be connected to a dc supply through imped- ance matching inductors and/or a transformer center-tap. typical dc current consumption is 32ma into each pin. lo C , lo + (pins 14, 15): differential local oscillator input. a single-ended lo may be used by connecting one pin to rf ground through a dc blocking capacitor. these pins are internally biased to 1.7 v; thus, dc blocking capacitors are required. each lo input pin is internally matched to 50 for both en states. tp (pin 16): test pin. this pin is used for production test purposes only and must be connected to ground. b lock diagra m 15 14 13 11 10 2 3 4 5 lo + 16 tp 17 exposed pad gnd lo ? gnd en v cc1 7 v cc2 i adj in + in ? lgnd 12 gnd 9 gnd out + out ? 5510 bd 1 temp 6 8 bias 5510f ltc 5510
15 for more information www.linear.com/LTC5510 tes t c ircui t s c3 c1 1 3 6 4 temperature monitor temp tp gnd gnd gnd lo + lo 50 lo ? in + in ? out + out ? lgnd en en i adj v cc1 v cc2 c5c4 c2 l3 c7 out 50 0.062? 0.015? 0.015? rf dc1983a evaluation board stack-up (nelco n4000-13) gnd gnd bias in 50  t1 1:1 1 16 13 12 11 10 9 15 14 2 3 4 5 8 6 7 c6 5510 f01 r1 v cc l1 to v cc l2 123 654 c8 nc t2 4:1 17 gnd LTC5510 c9 5v/3.3v wideband up/downmixer* 5 v wideband upmixer ref des f in = 30mhz-3000mhz f out = 1575mhz f in = 30mhz-2500 mhz f out = 2140mhz size comments c1, c2, c4, c5 0.1f 0.1f 0402 murata grm15, x7r c3 0.7pf - 0402 murata gjm15, c0g c6 1f 1f 0603 murata grm18, x7r c7, c8 10nf 10nf 0402 murata grm15, x7r c9 6.8pf 5.6pf 0402 murata gjm15, c0g l1, l2 6.8nh 5.6nh 0402 coilcraft 0402hp l3 0 0 0603 r1 4.75k (5v), 1.8k (3.3v) 4.75 k 0402 1% t1 mini-circuits tc1-1-13m+ mini-cir cuits tc1-1-13m+ t2 anaren bd1222j50200ahf mini-cir cuits ncs4-232+ *standard dc1983a eval board configuration figure 1. high frequency output test circuit schematic (dc1983a) 5510f ltc 5510
16 for more information www.linear.com/LTC5510 tes t c ircui t s in 50  t1 1:1 c3 1 6 3 4 c1 temperature monitor temp tp gnd gnd gnd lo + lo 50 lo ? in + in ? out + out ? lgnd en en i adj v cc1 v cc2 c5c4 c2 l3 c7 out + 0.062? 0.015? 0.015? rf dc1984a evaluation board stack-up (nelco n4000-13) gnd gnd bias out ? 1 16 13 12 11 10 9 15 14 2 3 4 5 8 6 7 c6 5510 f02 r1 v cc l1 l4 l5 l2 optional diff out c8 t2 4:1 17 gnd LTC5510 c9 c10 1 2 3 6 4 figure 2. low frequency output test circuit schematic (dc1984a) 5v vhf/uhf upmixer* 5v vhf/uhf wideband downmixer ref des f in = 70mhz f out = 100mhz-1000 mhz f in = 100mhz-1000 mhz f out = 44mhz size comments c1, c2, c4, c5 0.1f 0.1f 0402 murata grm15, x7r c3 0.5pf 0.9pf 0402 murata gjm15, c0g c6 1f 1f 0603 murata grm18, x7r c7, c8, c9, c10 10nf 10nf 0402 murata grm15, x7r l1, l2 - - 0603 l3 220nh 0 0603 coilcraft 0603hp, we 744761 l4, l5 15nh 0 0402 coilcraft 0402hp r1 - - 0402 t1 mini-circuits tc1-1-13m+ mini-cir cuits tc1-1-13m+ t2 mini-cir cuits tc4-19ln+ mini-cir cuits tc4-1w-7aln+ *standard dc1984a eval board configuration 5510f ltc 5510
17 for more information www.linear.com/LTC5510 the LTC5510 uses wideband high performance rf and lo amplifiers driving a double-balanced mixer core to achieve frequency up- or down-conversion with high linearity over a very broad frequency range. for flexibility, all ports are differential; however, the lo port has also been optimized for single-ended use. low side or high side lo injection can be used. the in port may also be driven single-ended, though with some reduction in performance. see the pin functions and block diagram sections for a description of each pin. test circuit schematics showing all a pplica t ions i n f or m a t ion figure 3. LTC5510 evaluation board layouts 3a. high frequency output board (dc1983a) 3b. low frequency output board (dc1984a) external components required for the data sheet specified performance are shown in figures 1 and 2. the evaluation boards are shown in figures 3a and 3b. the high frequency output test circuit, shown in figure 1, utilizes a multilayer chip balun to realize a single-ended output. the low frequency output test circuit in figure 2 uses a wire-wound balun and is designed to accommodate a differential output if desired. both the in and lo ports are very broadband and use the same configurations for both test circuits. additional components may be used to modify the dc supply current or frequency response, which will be discussed in the following sections. in port interface a simplified schematic of the mixer s input is shown in figure 4 a . the in + and in C pins drive the bases of the input transistors while internal resistors are used for impedance matching. these pins are internally biased to a common mode voltage of 1.6v , thus external capacitors c 1 and c2 are required for dc isolation and can be used for impedance matching. a small value of c 3 can be used to improve the impedance match at high frequencies and may improve noise figure. the 1:1 transformer, t 1, provides single- ended to differential conversion for optimum performance . the typical return loss at the in port is shown in figure 5 with 0.1 f at c1 and c2. the performance is better than 12db up to 2.6 ghz without c3. adding a capacitance of 0.7pf at c3 extends the impedance match to 3ghz. differential input impedances ( parallel equivalent) for various frequencies are listed in table 1. at frequencies below 30 mhz additional external components may be needed to optimize the input impedance. figure 4 b shows an equivalent circuit that can be used for single-ended or differential impedance matching at frequencies below 1ghz. above 1ghz, the s-parameters should be used. the dc bias current of the input amplifier flows through pin 4 ( lgnd). typically this pin should be directly connected to a good rf ground; however, at lower input frequencies it may be beneficial to insert an inductor to ground for improved ip2 performance. the inductor should have low resistance and must be rated to handle 64 ma dc current. 5510 f03a 5510 f03b 5510f ltc 5510
18 for more information www.linear.com/LTC5510 a pplica t ions i n f or m a t ion figure 4a. in port with external matching figure 4b. in port equivalent circuit (< 1ghz) v cc 5510 f04a in 50  t1 1:1 2 3 c1 LTC5510 c3 c2 64ma lgnd in + in ? 4 v cc figure 5. in port return loss table 1. in port differential impedance frequency (mhz) impedance () refl. coeff. real* imag* mag ang () 0.2 823 Cj3971 0.89 C1.4 1 751 Cj800 0.88 C7.2 10 133 Cj154 0.50 C41 30 78.1 Cj248 0.25 C36 50 73.3 Cj378 0.20 C27 100 71.3 Cj665 0.18 C17 200 70.7 Cj961 0.17 C12 500 70.0 Cj832 0.17 C14 1000 67.9 Cj509 0.16 C24 1200 66.7 Cj439 0.16 C28 1500 64.6 Cj367 0.15 C35 2000 60.4 Cj302 0.13 C49 2200 58.5 Cj289 0.12 C55 2500 55.5 Cj280 0.11 C66 3000 50.6 Cj303 0.08 C91 4000 42.9 Cj7460 0.08 C178 5000 42.7 j155 0.17 126 6000 55.9 j89 0.29 96 *parallel equivalent impedance lo input interface the LTC5510 can be driven by a single-ended or differ- ential lo signal. internal resistors, as shown in figure 6, provide an impedance match of 50 per side or 100 differential. the impedance match is maintained when the part is disabled as well. the lo input pins are internally biased to 1.7 v, thus external capacitors, c4 and c5 are used to provide dc isolation. 5510 f04b 75 450 450 200pf in + in ? frequency (mhz) 0 return loss (db) ?6 ?12 ?18 3000 2000 1000 4000 ?24 ?30 0 5510 f05 t1 = tc1-1-13m+ c1, c2 = 0.1f c3 = open c3 = 0.7pf 5510f ltc 5510
19 for more information www.linear.com/LTC5510 a pplica t ions i n f or m a t ion figure 7. single-ended lo input return loss figure 6. lo input circuit table 2. single-ended lo input impedance frequency (mhz) impedance () refl. coeff. real imag mag ang () 1 89.8 Cj0.9 0.28 C1 10 88.0 Cj8.8 0.28 C9 100 55.1 Cj16 0.16 C64 600 47.6 Cj14.4 0.05 C116 1100 46.9 Cj3.6 0.05 C129 1600 46.3 Cj3.2 0.05 C138 2100 45.9 Cj2.5 0.05 C147 2600 46.0 Cj1.5 0.04 C159 3100 46.7 Cj0.1 0.03 C179 3600 48.0 +j1.7 0.03 138 4100 50.2 +j3.9 0.04 85 4500 52.5 +j5.9 0.06 64 5000 56.1 +j8.9 0.1 51 6000 65.6 +j17 0.2 39 table 3. differential lo input impedance frequency (mhz) impedance () refl. coeff. real imag mag ang () 1 94.4 Cj0.1 0.31 0 10 94.4 Cj0.1 0.31 0 100 94.4 Cj1.2 0.31 C1 600 92.8 Cj6.7 0.3 C6 1100 89.8 Cj10 0.29 C10 1600 86.5 Cj12 0.28 C13 2100 84.0 Cj12 0.27 C14 2600 82.9 Cj10 0.26 C13 3100 83.6 Cj7.4 0.26 C9 3600 86.3 Cj3.5 0.27 C4 4100 91.1 +j1.8 0.29 2 4500 96.5 +j7.4 0.32 6 5000 104.8 +j17 0.37 11 6000 123.6 +j47 0.49 17 5510 f06 lo 50  c5 LTC5510 c4 lo ? lo + 15 14 v cc frequency (mhz) 0 return loss (db) ?5 ?10 ?15 ?20 4000 3000 2000 1000 5000 ?25 ?30 0 5510 f07 off (en = low) on (en = high) c4, c5 = 0.1f the measured return loss of the lo input port is shown in figure 7 for c4 and c5 values of 0.1 f. the return loss is better than 10db from 5mhz to 6ghz. for frequencies below 5 mhz, larger c4 and c5 values are required. table 2 lists the single-ended input impedance and reflection coefficient versus frequency for the lo input. the dif - ferential impedance is listed in table 3. 5510f ltc 5510
20 for more information www.linear.com/LTC5510 a pplica t ions i n f or m a t ion 5510 f08 32ma 32ma LTC5510 out + 11 out ? 10 v cc figure 8. output interface figure 9. output port equivalent circuit figure 10. hf board output schematic 5510 f09 LTC5510 out + 11 out ? 245 0.4pf 0.2pf 1.2nh 1.2nh 10 out port interface the differential output interface is shown in figure 8. the out + and out C pins are open collector outputs with internal load resistors that provide a 245 differential output resistance at low frequencies. figure 9 shows the equivalent circuit of the output and table 4 lists differential impedances for various frequencies. the impedance values are listed in parallel equivalent form, with equivalent capacitances also shown. for optimum single- ended performance, the differential output signal must be combined through an external transformer or a discrete balun circuit. in applications where differential filters or amplifiers follow the mixer, it is possible to eliminate the transformer and drive these components differentially. table 4. differential out port impedance frequency (mhz) impedance () refl. coeff. real* imag* (cap) mag ang 1 245 Cj240k (0.67pf) 0.66 0.0 10 244 Cj40k (0.40pf) 0.66 C0.2 50 244 Cj5.31k (0.60pf) 0.66 C1.1 100 245 Cj2.66k (0.60pf) 0.66 C2.3 200 244 Cj1.33k (0.60pf) 0.66 C4.5 300 243 Cj884 (0.60pf) 0.66 C6.8 400 242 Cj662 (0.60pf) 0.66 C9.0 500 240 Cj529 (0.60pf) 0.66 C11 1000 224 Cj260 (0.61pf) 0.65 C23 1500 201 Cj169 (0.63pf) 0.63 C35 2000 171 Cj122 (0.65pf) 0.60 C48 2500 138 Cj93 (0.69pf) 0.57 C62 3000 104 Cj73 (0.73pf) 0.53 C78 3500 73 Cj59 (0.77pf) 0.48 C97 4000 47 Cj51 (0.78pf) 0.43 C120 4500 29 Cj59 (0.60pf) 0.39 C148 * parallel equivalent v cc 5510 f10 out + out ? out 11 10 l1 l2 c8 c9 t2 output matching: high frequency output board the high frequency ( hf) output evaluation board ( dc1983 a) shown in figure 3 a is designed to use multilayer chip hybrid baluns at the output. this board is intended for frequen - cies above about 800mhz ( limited by balun availability). these baluns deliver good performance and are smaller than wire-wound baluns. the board is configured for the matching topology shown in figure 10. inductors l1 and l2 are used to tune out the parasitic output capacitance, while the transformer provides differential to single-ended conversion and impedance transformation. the dc bias to the mixer core can be applied through the matching inductors. each pin draws approximately 32 ma of dc supply current. 5510f ltc 5510
21 for more information www.linear.com/LTC5510 a pplica t ions i n f or m a t ion figure 12. lf board output schematic figure 11. out port return loss of hf board (dc1983a). tuned for 1575mhz (a), and 2140mhz (b) table 6. out port component values: lf output board ( dc1984 a) frequency (mhz) range * (mhz) l1, l2 (nh) l4, l5 (nh) t2 44 5 to 325 C 0 mini-circuits tc4-1w-7aln+ 456 10 to 1300 C 15 mini-circuits tc4-19ln+ * 12db return loss bandwidth table 5. out port component values: hf output board ( dc1983 a) frequency (mhz) range * (ghz) l1, l2 (nh) c9 (pf) t2 1575 1.2 to 2.1 6.8 6.8 anaren bd1222j50200ahf 2140 1.6 to 2.5 5.6 5.6 mini-circuits ncs4-232+ * 12db return loss bandwidth frequency (mhz) 1000 ?24 return loss (db) ?6 ?12 ?18 0 2500 3000 1500 2000 5510 f11 a b v cc 5510 f12 out + out ? out 11 10 l1 l4 l5 l2 c8 LTC5510 t2 c10 c9 1 2 3 6 4 figure 13. out port return loss of lf board (dc1984a) tuned for 44mhz (a), and 456mhz (b) capacitor c 9 can be used to improve the impedance match. the component values used for characterization are listed in table 5, along with the 12 db return loss bandwidths. the measured return loss curves are plotted in figure 11. output matching: low frequency output board for lower output frequencies, wire - wound transformers pro - vide be tter pe rformance. the low frequency ( lf) evaluation board ( dc1984a ) in figure 3(b ) accommodates these appli - cations. the output matching topology is shown in figure 12. components l 1, l2, l4 and l5 are used to tune the im- pedance match , while t2 provides the desired impedance transformation. c9 and c10 are used for dc blocking in some applications. table 6 lists component values used for characterization, and the measured return loss perfor - mance is plotted in figure 13. dc and rf grounding t he LTC5510 relies on the backside ground for both rf and thermal performance. the exposed pad must be soldered to the low impedance top side ground plane of the board. the top side ground should also be connected to other ground layers to aid in thermal dissipation and ensure a low inductance rf ground . the LTC5510 evaluation boards (figures 3 a and 3 b) utilize a 4 4 array of vias under the exposed pad for this purpose. frequency (mhz) 0 return loss (db) ?6 ?12 1200 900 600 300 1500 ?18 ?24 0 5510 f13 a b 5510f ltc 5510
22 for more information www.linear.com/LTC5510 a pplica t ions i n f or m a t ion enable interface figure 14 shows a simplified schematic of the en pin interface. to enable the part, the applied en voltage must be greater than 1.8 v. setting the voltage below 0.5 v will disable the ic. if the enable function is not required, the enable pin can be connected directly to v cc . the voltage at the enable pin should never exceed the power supply voltage (v cc ) by more than 0.3 v. otherwise, supply cur- rent may be sourced through the upper esd diode. under no circumstances should voltage be applied to the enable pin before the supply voltage is applied to the v cc pin. if this occurs, damage to the ic may result. 5510 f14 LTC5510 300k en 5 6 v cc1 figure 14. enable pin interface figure 15. current adjust pin interface 5510 f15 LTC5510 715 3v 4ma i adj 8 6 v cc1 r 1 bias current adjust pin (i adj ) the i adj pin (pin 8) can be used to optimize the perfor- mance of the mixer core over temperature. the nominal open-cir cuit dc voltage on this pin is 1.8 v and the typical short-circuit current is 1.9 ma. as shown in figure 15, an internal 4 ma reference sets the current in the mixer core. connecting resistor r1 to the i adj pin shunts some of the reference current to ground, thus reducing the mixer core current. the optimum value of r1 depends on the supply voltage and intended output frequency. some recommended values are shown in table 7, but the values can be optimized as required for individual applications. table 7. recommended values for r1 v cc (v) f out (mhz) r1 () i cc (ma) 5 <1200 open 105 5 >1200 4.75k 99 3.3 <1200 1k 90 3.3 >1200 1.8k 94 temperature monitor (temp) the temp input (pin 1) is connected to an on-chip diode that can be used as a coarse temperature monitor by forc - ing current into it and measuring the resulting voltage. the temperature diode is protected by a series 30 resistor and additional esd diodes to ground. the temp pin voltage is shown as a function of junction temperature in figure 16. given the voltage ( in mv) at the pin, v d , the junction temperature can be estimated for forced input currents of 10 a and 80 a using the following equations: t j (10a) = (v d C 742.4)/ C1.796 t j (80a) = (v d C 795.6)/ C1.609 figure 16. temp pin voltage vs junction temperature junction temperature (c) ?50 temp pin voltage (mv) 800 850 750 700 650 600 9070503010?10?30 110 550 500 900 5510 g16 i in = 80a i in = 10a 5510f ltc 5510
23 for more information www.linear.com/LTC5510 a pplica t ions i n f or m a t ion table 8. output spur levels (dbc), f spur = |m ? f in C n ? f lo | (f in = 190mhz at C7dbm, f lo = 1765mhz at 0dbm, v cc = 5v) n 0 1 2 3 4 5 6 7 8 m 0 C C30 C30 C40 C18 C44 C4 C46 C24 1 C64 0** C50 C30 C64 C22 C55 C47 C72 2 * C37 C73 C65 C65 C58 C49 C72 C59 3 * C48 * C71 * C66 C79 C75 C86 4 * C68 * C83 * C84 * * * 5 * C77 * C84 * C87 * * * 6 * C89 * C87 * * * * * 7 * * * C86 * * * * * 8 * * * C84 * * * * * 9 * * * * * * * * * 10 * * * * * * * * * * less than 24 for more information www.linear.com/LTC5510 typical a pplica t ions lgnd lo ? lo + out + out ? in + in ? 10nf en en v cc1 v cc2 i adj 5v LTC5510 1f 2nh 2nh 5510 ta02 lo 50 in 456mhz mini-circuits tc1-1-13m + 1:1 mini-circuits ncs1-422 + 1:1 0.1f 0.1f 0.1f 0.1f 0.7pf 4.75k bias typical performance (room temperature) in = 456mhz, out = 3500mhz, lo = 3956mhz p in = ?10dbm, p lo = 0dbm g c = 0.6db oip3 = 24.7dbm ssb nf = 13.3db input p1db = 11dbm out 50 5v 123 654 10nf nc 4.7pf output frequency (mhz) 3100 oip3 (dbm), nf (db) gain (db) 25 20 15 10 3700 3500 3300 3900 5 0 30 5 4 3 2 1 0 6 5510 ta03 g c oip3 hslo lslo nf f in = 456mhz input frequency (mhz) 0 oip3 (dbm) gain (db) 25 20 15 10 800 600 400 200 1000 5 0 30 5 4 3 2 1 0 6 5510 ta04 g c oip3 f out = 3500mhz hslo lslo frequency (mhz) 0 isolation (db) lo leakage (dbm) 80 60 40 4000 3000 2000 1000 5000 20 0 100 ?20 ?40 ?60 ?80 ?100 0 5510 ta05 in-lo lo-out lo-in in-out frequency (mhz) 0 return loss (db) ?6 ?12 ?18 4000 3000 2000 1000 5000 ?24 ?30 0 5510 ta06 in out lo upmixer with 3.3ghz to 3.8ghz output conversion gain, oip3 and nf vs output frequency in isolation and lo leakage vs frequency conversion gain and oip3 vs input frequency in, out and lo port return loss vs frequency 5510f ltc 5510
25 for more information www.linear.com/LTC5510 typical a pplica t ions mixer with extended input frequency range to 6ghz conversion gain and iip3 vs input frequency in port and lo port return loss vs frequency lo-out leakage and in-out isolation vs frequency out port return loss vs frequency lgnd lo ? lo + out + out ? in + in ? 10nf en en v cc1 v cc2 i adj 5v LTC5510 1f 5510 ta07 lo 50 out 140mhz in 30mhz to 6000mhz mini-circuits tcm1-43x + 1:1 note: tcm1-43x+ performance is only specified to 4ghz mini-circuits tc4-1w-7aln + 4:1 0.1f 0.1f 0.1f 0.1f 0.3pf 10nf 4.75k bias typical performance (room temperature) in = 3ghz, out = 140mhz, lo = 3.14ghz p in = ?10dbm, p lo = 0dbm g c = 1.3db iip3 = 21.3dbm input frequency (mhz) 0 gain (db), iip3 (dbm) 25 30 20 15 10 5 5000 4000 3000 2000 1000 6000 0 ?5 35 5510 ta08 iip3 g c f out = 140mhz hslo frequency (mhz) 0 lo-out leakage (dbm) in-out isolation (db) ?20 ?10 ?30 ?40 ?50 5000 4000 3000 2000 1000 6000 ?60 0 40 50 30 20 10 0 60 5510 ta09 in-out lo-out frequency (mhz) 0 return loss (db) ?10 ?5 ?15 ?20 ?25 5000 4000 3000 2000 1000 6000 ?35 ?30 0 5510 ta10 in-port lo-port frequency (mhz) 0 return loss (db) ?10 ?5 ?15 ?20 400 300 200 100 500 ?25 0 5510 ta11 5510f ltc 5510
26 for more information www.linear.com/LTC5510 typical a pplica t ions lgnd lo ? lo + out + out ? in + in ? 10nf en en v cc1 v cc2 i adj 5v LTC5510 1f in 100mhz to 1000mhz 50 5510 ta12 lo 50 out 44mhz 50 typical performance (t c = 25c) in = 450mhz, out = 44mhz, lo = 494mhz p in = ?5dbm, p lo = 0dbm g c = 1.8db iip3 = 26.3dbm ssb nf = 11.5db input p1db = 8.8dbm tc4-1w-7aln + 4:1 10nf 10nf 10nf 10nf 10nf 100nh bias broadband downmixer application using single-ended input input frequency (mhz) 0 gain (db), iip3 (dbm), nf (db) 25 20 15 800 600 400 200 1000 5 10 0 30 5510 ta13 nf iip3 g c f out = 44mhz hslo output frequency (mhz) 0 gain (db) iip3 (dbm) 5 4 25020015010050 300 2 3 1 6 26 24 20 22 18 28 5510 ta14 iip3 g c f in = 450mhz hslo frequency (mhz) 0 lo leakage (dbm) in isolation (db) 900 600 300 1200 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 0 0 10 20 30 40 50 60 70 80 90 5510 ta15 in-lo in-out lo-in lo-out frequency (mhz) 0 return loss (db) 800 1000 600400200 1200 ?35 ?30 ?25 ?20 ?15 ?10 ?5 0 5510 ta16 in lo out conversion gain, iip3 and nf vs input frequency lo leakage and in isolation vs frequency conversion gain and iip3 vs output frequency in, out and lo port return loss vs frequency 5510f ltc 5510
ltc 5510 27 5510f information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no representa- tion that the interconnection of its circuits as described herein will not infringe on existing patent rights. p ackage descrip t ion please refer to http://www .linear.com/designtools/packaging/ for the most recent package drawings. 4.00 0.10 (4 sides) note: 1. drawing conforms to jedec package outline mo-220 variation (wggc) 2. drawing not to scale 3. all dimensions are in millimeters 4. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.15mm on any side 5. exposed pad shall be solder plated 6. shaded area is only a reference for pin 1 location on the top and bottom of package pin 1 top mark (note 6) 0.55 0.20 1615 1 2 bottom view?exposed pad 2.15 0.10 (4-sides) 0.75 0.05 r = 0.115 typ 0.30 0.05 0.65 bsc 0.200 ref 0.00 ? 0.05 (uf16) qfn 10-04 recommended solder pad pitch and dimensions 0.72 0.05 0.30 0.05 0.65 bsc 2.15 0.05 (4 sides) 2.90 0.05 4.35 0.05 package outline pin 1 notch r = 0.20 typ or 0.35 45 chamfer uf package 16-lead plastic qfn (4mm 4mm) (reference ltc dwg # 05-08-1692 rev ?)
ltc 5510 28 5510f 5v c atv downmixer with 1ghz if bandwidth linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 fax : (408) 434-0507 www.linear.com/LTC5510 linear technology corporation 2013 lt 0613 ? printed in usa r ela t e d p ar t s typical a pplica t ion part number description comments mixers and modulators lt ? 5527 400mhz to 3.7ghz, 5v downconverting mixer 2.3db gain, 23.5dbm iip3 and 12.5db nf at 1900mhz, 5v/78ma supply lt5557 400mhz to 3.8ghz, 3.3v downconverting mixer 2.9db gain, 24.7dbm iip3 and 11.7db nf at 1950mhz, 3.3v/82ma supply ltc559x 600mhz to 4.5ghz dual downconverting mixer family 8.5db gain, 26.5dbm iip3, 9.9db nf, 3.3v/380ma supply ltc5569 300mhz to 4ghz, 3.3v dual active downconverting mixer 2db gain, 26.8dbm iip3 and 11.7db nf, 3.3v/180ma supply ltc554x 600mhz to 4 ghz, 5 v downconverting mixer family 8db gain, >25dbm iip3 and 10db nf, 3.3v/200ma supply lt5578 400mhz to 2.7ghz upconverting mixer 27dbm oip3 at 900mhz, 24.2dbm at 1.95ghz, integrated rf output transformer lt5579 1.5ghz to 3.8ghz upconverting mixer 27.3dbm oip3 at 2.14ghz, nf = 9.9db, 3.3v supply, single-ended lo and rf ports ltc5588-1 200mhz to 6ghz i/q modulator 31dbm oip3 at 2.14ghz, C160.6dbm/hz noise floor ltc5585 700mhz to 3ghz wideband i/q demodulator >530mhz demodulation bandwidth, iip2 tunable to >80dbm, dc offset nulling amplifiers ltc6430-15 high linearity differential if amp 20mhz to 2ghz bandwidth, 15.2db gain, 50dbm oip3, 3db nf at 240mhz ltc6431-15 high linearity single-ended if amp 20mhz to 1.7ghz bandwidth, 15.5db gain, 47dbm oip3, 3.3db nf at 240mhz ltc 6412 31db linear analog vga 35dbm oip3 at 240mhz, continuous gain range C14db to 17db lt5554 ultralow distortion if digital vga 48dbm oip3 at 200mhz, 2db to 18db gain range, 0.125db gain steps rf power detectors lt5538 40mhz to 3.8ghz log detector 0.8db accuracy over t emperature, C72dbm sensitivity, 75db dynamic range lt5581 6ghz low power rms detector 40db dynamic range, 1db accuracy over temperature, 1.5ma supply current ltc5582 40mhz to 10ghz rms detector 0.5db accuracy over temperature, 0.2db linearity error, 57db dynamic range ltc5583 dual 6ghz rms power detector up to 60db dynamic range, 0.5db accuracy over temperature, >50db isolation adcs ltc2208 16-bit, 130msps adc 78dbfs noise floor, >83db sfdr at 250mhz ltc2153-14 14-bit, 310msps low power adc 68.8dbfs snr, 88db sfdr, 401mw power consumption rf pll/synthesizer with vco ltc6946-1/ ltc6946-2/ ltc 6946-3 low noise, low spurious integer-n pll with integrated vco 373mhz to 5.79ghz, C157dbc/hz wb phase noise floor, C100dbc/hz closed-loop phase noise lgnd lo ? gnd lo + tp out + out ? gnd in + gnd in ? 10nf en en v cc1 v cc2 i adj 5v LTC5510 1f 15nh 15nh 5510 ta17 lo 50 if out 50mhz to 1000mhz 50 in 1150mhz 50 tc1-1-13m + 1:1 tc4-19ln + 4:1 1 2 3 6 4 10nf 10nf 10nf 10nf 0.5pf 10nf 10nf 10nf if output frequency (mhz) 0 gain (db), oip3 (dbm) 2rf-lo spur (dbc) 600 800 400 200 1000 0 9 6 3 15 12 18 21 24 27 30 ?110 ?100 ?90 ?80 ?70 ?60 ?50 ?40 ?30 ?20 ?10 5510 ta18 2rf-lo g c oip3 f in = 1150mhz p in = ?7dbm f lo = f in + f out p lo = 0dbm t c = 25c conversion gain, oip3 and 2 rf- lo spur vs if output frequency


▲Up To Search▲   

 
Price & Availability of LTC5510

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X